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1 Introduction

It is well-known since Gauss that infinitely many quadratic fields have even class number. In fact,
if K is a quadratic field of discriminant D, having r prime divisors, then the class number hK

is divisible by 2r−1 if D < 0 and by 2r−2 if D > 0. See [4, Theorem 3.8.8] for a more precise
statement.

In 1922 Nagell [17, Satz VI] obtained the following remarkable result: given a positive integer ℓ,
there exist infinitely many imaginary quadratic fields with class number divisible by ℓ. See [2] for
a different proof.

It took almost half a century to extend Nagell’s result to real quadratic field, see Yamamoto [29]
and Weinberger [28]. Uchida [27] extended this to cyclic cubic fields. In mid-eighties, Azuhata
and Ichimura [3] and Nakano [18, 19] obtained similar results for fields of arbitrary degree n.

Recently Murty [16] gave quantitative versions of the theorems of Nagell and Yamamoto-
Weinberger on quadratic fields. He proved that for all sufficiently large X there exist at
least c(ℓ)X1/2+1/ℓ imaginary quadratic fields and at least c(ℓ, ε)X1/4ℓ−ε real quadratic fields with
class number divisible by ℓ and discriminant not exceeding X in absolute value. (The second
exponent can be replaced by 1/2ℓ − ε if ℓ is odd.) Various refinement and extensions of Murty’s
results were suggested in [5, 15, 25, 30].

Much less is known for fields of higher degree. In [13], it is shown that at least c(ℓ)X1/6ℓ/ log X
pure cubic fields have discriminant not exceeding X and class number divisible by ℓ.

In this paper, we extend these results to fields of degree n ≥ 3.

Theorem 1.1 Let n and ℓ be positive integers, n ≥ 3, and put µ = 1
2(n−1)ℓ . There exist positive

real numbers X0 = X0(n, ℓ) and c = c(n, ℓ) with the following property. For any X > X0 there is
at least cXµ pairwise non-isomorphic number fields of degree n, discriminant not exceeding X ,
and the class number divisible by ℓ.

Actually, we prove slightly more: for all those fields the class group has an element of exact
order ℓ.

The famous Cohen-Lenstra heuristics [7, 8] predict that number fields of degree n > 1 with
class number divisible by ℓ should have positive density among all number fields of degree n.
More precisely, denote by Fn(X) the set of all non-isomorphic number fields of degree n and

discriminant not exceeding X and put F (ℓ)
n (X) = {K ∈ Fn(X) : ℓ|h(K)}. Then, as X → ∞, the

quotient
∣

∣

∣
F (ℓ)

n (X)
∣

∣

∣
/ |Fn(X)| (conjecturally) tends to a positive rational number, which can be

explicitly expressed in terms of certain finite Euler-type products.
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This conjecture seems to be out of reach at the present state of our knowledge. Theorem 1.1
implies that number fields of degree n with class group divisible by ℓ have positive logarithmic

lower density among all number fields of degree n :

lim inf
X→∞

log
∣

∣

∣
F (ℓ)

n (X)
∣

∣

∣

log |Fn(X)| ≥ 2

(n − 1)(n + 2)ℓ
. (1)

This is an immediate consequence of Theorem 1.1 and the inequality

|Fn(X)| ≤ c(n)X(n+2)/4 (2)

due to Schmidt [22] (see also [6, Proposition 9.3.4]). For large n inequality (1) can be refined due
to the recent work of Ellenberg and Venkatesh [10].

The argument of the present paper relies on the famous construction of Ankeny-Brauer-Chowla
fields [1] and is strongly inspired by the work of Sprindzhuk [26, Section 8.6] and Halter-Koch et

al. [12]. In Sections 2–4 we collect necessary facts about thin sets and Ankeny-Brauer-Chowla
fields. The proof of Theorem 1.1 occupies Sections 5–7.

1.1 Notations and Conventions

All fields in this paper are of characteristic 0. Let K be a field. We write K̄ for its algebraic
closure. By the Galois group of a separable polynomial f(x) ∈ K[x] we mean the Galois group of
the splitting field of f over K, realized as a subgroup of the symmetric group Sn, where n = deg f .
In particular, f is irreducible over K if and only if its Galois group is transitive.

Unless the contrary is stated explicitly (as it is done in Section 3), small letters t, x, y, z with
or without indices denote indeterminates algebraically independent over the base field.

Acknowledgements We thank Henri Cohen, Jacques Martinet and Michel Olivier for useful
discussions. We are indebted to W ladys law Narkiewicz and the referee for drawing our attention
to the work of Nagell and Nakano. Yuri Bilu thanks Vera Bergelson for inspiring comments. This
work was supported in part by the Joint Project France-Mexico ECOS–ANUIES M02–M01.

2 Thin sets

Let K be a field and let n be a positive integer. Let Υ be a subset of the affine space Kn. The
set Υ is called basic thin set of the first type if there exists a non-zero polynomial F (t) ∈ K(t)
(where t = (t1, . . . , tn)) such that (τ ) ∈ Υ if and only if F (τ ) = 0. The set Υ is a basic thin set of

the second type if there exists an K-irreducible polynomial F (t, x) ∈ K(t, x) with degx F ≥ 2 such
that (τ ) ∈ Υ if and only if the specialized polynomial F (τ , x) ∈ K[x] has a root in K. The set Υ
is called thin if it is contained in a finite union of basic thin sets. It is obvious that the union of
finitely many thin sets is thin, and that a subset of a thin set is thin.

Serre [23, Section 9.1] gives a differently looking, but equivalent definition of thin sets.
This following property must be known, but we could not find it in the literature.

Proposition 2.1 Let L be a finitely generated extension of the field K, and Υ a thin subset
of Ln. Then Υ ∩ Kn is a thin subset of Kn.

Proof The case of finite extension L/K is considered in [23, page 128], so we are left with the
pure transcendent case. Thus, assume that L = K(z), where z = (z1, . . . , zs), and let Υ ⊂ Ln be
a basic thin set of the first type, defined by the polynomial F (t) ∈ L[t].

We may assume that Kn+s is not a thin subset of itself; otherwise Kn is a thin subset of itself
as well (cf. [23, Section 9.4]), and the statement becomes trivial. It follows that F , viewed as
a rational function in t, z, is defined and does not vanish at certain

(

τ ′, ζ
)

∈ Kn+s. Hence, the

2



polynomial Fζ(t) ∈ K[t], obtained from F by specialization z = ζ, is defined and non-zero. For

any τ ∈ Υ ∩ Kn we have Fζ(τ ) = 0. Hence, Υ ∩ Kn is thin.
One argues similarly in the case when Υ ⊂ Ln is a basic thin set of the second type, de-

fined by the polynomial F (t, x) ∈ L[t, x]. This time, we find ζ ∈ Ks such that the polynomial
Fζ(t, x) ∈ K[t, x] has no factors of x-degree 1. Let Fζ = G1 . . . Gk be the irreducible decomposi-

tion of Fζ in K[t, x]. Then every Gi is of x-degree at least 2, and Υ ∩ Kn lies in the union of the
corresponding basic thin sets of the second type. �

Theorem 2.2 Let F (t1, . . . , tn, x) ∈ K[t1, . . . , tn, x] be a polynomial of x-degree m, and let s ≤ n.
Let G ≤ Sm be the Galois group of F over the field K(t1, . . . , tn). Then for all (τ1, . . . , τs) ∈ Ks

outside a thin set the polynomial F (τ1, . . . , τs, ts+1, . . . , tn, x) ∈ K[ts+1, . . . , tn, x] is separable, of
x-degree m, and its Galois group over K(ts+1, . . . , tn) is G.

In particular, if F is irreducible over K(t1, . . . , tn), then for all (τ1, . . . , τs) ∈ Ks out-
side a thin set the polynomial F (τ1, . . . , τs, ts+1, . . . , tn, x) ∈ K[ts+1, . . . , tn, x] is irreducible over
K(ts+1, . . . , tn).

Proof The case s = n is treated in [23, Section 9.2, Propositions 1 and 2]. The general case
reduces to s = n by Proposition 2.1. �

Hilbert’s irreducibility theorem asserts that Kn is not thin for a finitely generated field K. We
shall use the following quantitative version for K = Q, due to S. Cohen [9]. See also Serre [23,
Section 13.1, Theorem 1].

Theorem 2.3 Let Υ be a thin subset of Qn. Then there exists a positive constant c = c(Υ) such
that for X > 1 we have

|Υ ∩ Zn ∩ [−X, X ]n| ≤ cXn−1/2 log X. �

(For n = 1 the log-factor can be omitted.)

3 A special thin set

In this (and only this) section we use capital letters X, Y, Z, . . . for independent variables, reserving
small letters x, y, z . . . for algebraic functions.

Proposition 3.1 Let K(x) be the field of rational functions over K. Let u, v ∈ K(x) satisfy the
following: v has a simple zero (or a simple pole) in K̄ which is neither a zero nor a pole of u. Then
for any positive integers k and ℓ we have

[

K(x, u1/k, v1/ℓ) : K(x, u1/k)
]

= ℓ.

Proof Obviously,
[

K(x, u1/k, v1/ℓ) : K(x, u1/k)
]

≤ ℓ, so it remains to prove that
[

K(x, u1/k, v1/ℓ) : K(x, u1/k)
]

≥ ℓ.

Let α ∈ K̄ be a simple zero (or pole) of v, which is neither a zero nor a pole of u, and
let Ordα be the corresponding place of the field K(x). This place is unramified in the field
K(x, u1/k) , but it is ramified in the field K(x, u1/k, v1/ℓ), with ramification index ℓ. Hence
[

K(x, u1/k, v1/ℓ) : K(x, u1/k)
]

≥ ℓ, as wanted. �

Proposition 3.2 Let K be a field. Consider the polynomial

f(T, X) := (X − a1) · · · (X − an−1)
(

X − αT ℓ − β
)

− 1 ∈ K[X, T ],

where n, ℓ are positive integers and a1, . . . , an−1, α, β ∈ K∗. Let ν1, . . . , νn−1, ν be integers, ν 6= 0.
Let Υ be the subset of K defined as follows: τ ∈ K belongs to Υ if for some root ξ of the polyno-

mial f(τ, X) ∈ K[X ], and for some determination of ζ =
(

ξ(ξ − a1)ν1/ν · · · (ξ − an−1)νn−1/ν
)1/ℓ

,
we have [K(ξ, ζ) : K(ξ)] < ℓ.

Assume that the polynomial f(T, X) is irreducible over K, and that the polynomial
f(0, X) ∈ K[X ] has a simple root in K̄∗. Then Υ is thin.
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Proof Let K(x) be the field of rational functions and let t, z ∈ K(x) be defined by

t =

(

f(0, x)

α(x − a1) · · · (x − an−1)

)1/ℓ

, z =
(

x(x − a1)ν1/ν · · · (x − an−1)νn−1/ν
)1/ℓ

.

Then f(t, x) = 0, and, since f is irreducible, we have

[K(x, t) : K(t)] = n, [K(x, t) : K(x)] = ℓ. (3)

Also,
[K(x, z) : K(x)] ≥ ℓ (4)

(consider the ramification at 0).
Further, by the assumption, f(0, x) has a non-zero simple root. This root is distinct from any

of the numbers 0, a1, . . . , an−1. Proposition 3.1 implies that [K(x, z, t) : K(x, z)] = ℓ. Combining
this with (3) and (4), we obtain m := [K(x, z, t) : K(t)] ≥ nℓ.

Now let y ∈ K(x, z, t) be such that K(x, z, t) = K(t, y), and let g(T, Y ) ∈ K[T, Y ] be the ir-
reducible polynomial over K such that g(t, y) = 0. Then degy g = m. Applying Theorem 2.2, we
find a thin set Υ1 ⊂ K such that for any τ ∈ K \ Υ1, the polynomial g(τ, Y ) ∈ K[Y ] is of degree m
and irreducible over K.

On the other hand, there exists h(T, X, Z) ∈ K(T )[X, Z] such that y = h(t, x, z). Denote
by d(T ) the denominator of h(T, X, Z).

Fix τ ∈ Υ, together with the corresponding ξ and ζ. Then [K(ξ, ζ) : K] < nℓ ≤ m. Assume that
d(τ) 6= 0. Then h(τ, ξ, ζ) is a root of g(τ, Y ) of degree < m over K. Hence, either deg g(τ, Y ) < m
or g(τ, Y ) is reducible over K. In both cases τ ∈ Υ1.

We have proved that Υ ⊆ Υ1 ∪ {the roots of d(T )}. Hence, Υ is thin. �

4 The Ankeny-Brauer-Chowla fields

Let a1, . . . , an, where n ≥ 3, be pairwise distinct integers and f(x) = (x − a1) · · · (x − an) − 1. It is
well-known that f(x) is an irreducible polynomial [21, Problem 8.121]. The number fields, defined
by such polynomials, are called Ankeny-Brauer-Chowla fields [1] (ABC-fields in the sequel).

Let ξ be a root of f . The main property of the ABC-fields is that, under mild assumptions about
the numbers a1, . . . , an, the field K = Q(ξ) is totally real, and the numbers ξ − a1, . . . , ξ − an−1

form a full rank system of units of K.
Below we summarize the properties of the Ankeny-Brauer-Chowla polynomials and fields, to be

used in this paper. In the sequel, a1, . . . , an−1 are fixed pairwise distinct integers, a runs in the set
of integers distinct from any of a1, . . . , an−1, and fa(x) = (x − a1) · · · (x − an−1)(x − a) − 1. Un-
less the contrary is stated explicitly, implicit constants in this section depend only on a1, . . . , an−1.
In particular, sufficiently large means exceeding a positive constant depending on a1, . . . , an−1.

Proposition 4.1 Assume that |a| is sufficiently large. Then we have the following.

1. The polynomial fa(x) has n real roots ξ1, . . . , ξn−1, ξ satisfying

|ξk − ak| ≪ |a|−1 (k = 1, . . . , n − 1), (5)

|ξ − a| ≪ |a|1−n. (6)

In particular, the number field Ka := Q(ξ) is totally real.

2. The discriminant of the field Ka is O
(

|a|2(n−1)
)

.

3. The numbers ξ − a1, . . . , ξ − an−1, form a full rank system of independent units of the
field Ka.

(These numbers are called basic ABC-units. The multiplicative group, generated by the
basic ABC-units, is called the group of ABC-units.)
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4. Assume that the field Ka is primitive1, and that the absolute value of its discriminant
exceeds |a|κ, where κ is a positive number. Then the group of ABC-units is of index at most
O

(

κ1−n
)

in the group of all units.

Proof Parts 1 and 2 are obvious. To prove Part 3, consider the real embeddings

σi : Ka →R

ξ 7→ ξi
(i = 1, . . . , n − 1). (7)

Then (5) implies that log |σi(ξ − aj)| = −δij log |a| + O(1), where δij is the Kronecker symbol.
Hence,

RABC :=
∣

∣

∣
det [log |σi(ξ − aj)|]1≤i,j≤n−1

∣

∣

∣
= (log |a|)n−1 + O

(

(log |a|)n−3
)

.

In particular, RABC 6= 0 for sufficiently large |a|, which proves Part 3.
For Part 4, recall (cf. [24, 11]) that the regulator R and the discriminant D of a primitive field K

satisfy the inequality R ≫ (log |D|)r, where r is the rank of the unit group of K and the implicit
constant depends on the degree of K. For the totally real field Ka we have r = n − 1, which,
together with the assumption |D| ≥ |a|κ, imply R ≫ (κ log |a|)n−1. Hence, RABC/R ≪ κ1−n, as
wanted. �

(It might be pointed out that for sufficiently large |a| the implicit constant in Part 4 depends
only on n. For instance, using Theorem C of Friedman [11], one can show that for sufficiently
large |a| the index of the ABC-units in the group of all units does not exceed Cn2nκ1−n, where C
is an absolute constant. We shall not use this more precise estimate.)

Sprindzhuk [26, Lemma 8.6.4] showed that, for n ≥ 3, distinct ABC-fields are seldom isomor-
phic. Below, we reproduce his result in a slightly refined form.

Proposition 4.2 (Sprindzhuk) Assume that n ≥ 3. Let A be a sufficiently large positive integer,
and let S be a set of integers a satisfying A ≤ |a| ≤ 2A and such that for all a ∈ S the fields Ka

are isomorphic to the same field K. Then |S| ≤ n(n − 1)(n − 2).

Proof Assume that |S| > n(n − 1)(n − 2). Since R has exactly n distinct subfields isomor-
phic to K, the set S has more than (n − 1)(n − 2) elements a such that all the fields Ka are
the same. Further, let σi : Ka → R be defined as in (7). Then, for a given Ka, there exist
(n − 1)(n − 2) possibilities for the pair (σ1, σ2). Hence, there are distinct a and a′ such that
Ka = Ka′ , σ1 = σ′

1 and σ2 = σ′
2. (Here and below ξ′, ξ′1, . . . , ξ

′
n−1, σ

′
1, . . . , σ

′
n−1 have the same

meaning for a′ as ξ, ξ1, . . . , ξn−1, σ1, . . . , σn−1 for a.) It follows that ξ − ξ′ is a non-zero al-
gebraic integer from the field Ka, and σi(ξ − ξ′) = ξi − ξ′i for i = 1, 2. Using (5) and the as-
sumption A ≤ |a|, |a′| ≤ 2A, we obtain |ξ − ξ′| ≪ A, as well as |σi(ξ − ξ′)| ≪ A−1 for i = 1, 2 and
|σi(ξ − ξ′)| ≪ 1 for i = 3, . . . , n − 1. Hence

1 ≤ |NKa
(ξ − ξ′)| = |ξ − ξ′|

n−1
∏

i=1

|σi(ξ − ξ′)| ≪ A−1,

which is a contradiction for sufficiently large values of A. �

5 Construction of the main polynomial

Starting from section, we begin the proof of Theorem 1.1. Until the end of the paper, we fix
positive integers n and ℓ. Unless the contrary is stated explicitly, we shall always assume that

n ≥ 3.
In this section, we construct, for the given n and ℓ, a special polynomial in two variables, which

will be used in the subsequent sections to produce Ankeny-Brauer-Chowla fields having required
properties.

1that is, it has no proper subfield distinct from Q.
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Theorem 5.1 There exists pairwise distinct non-zero integers a1, . . . , an−1 such that the polyno-
mial

f(t, x) := (x − a1) · · · (x − an−1)

(

x − (−1)n−1 tℓ − 1

a1 · · · an−1

)

− 1 ∈ Q[t, x] (8)

has a symmetric Galois group over the field Q(t), and the polynomial f(0, x) is separable.

Our starting point is the following result of Halter-Koch et al. [12, Proposition 3.1]:

Proposition 5.2 Let K be a field, γ ∈ K∗ and t1, . . . , tn (algebraically independent) indetermi-
nates over K. Then the Galois group of the polynomial (x − t1) · · · (x − tn) − γ over K(t1, . . . , tn)
is Sn. �

Proposition 5.3 Let F be a field and H a finite Galois extension of F with Galois group Sn,
where n ≥ 4. Let α an element of F̄ such that αℓ ∈ F . Then Gal(H(α)/F (α)) is either Sn or the
alternating group An.

Proof Let ζ be a primitive ℓ-th root of unity and put F1 := F (α, ζ) and H1 := H(α, ζ). Since

Gal(H1/F1) ≤ Gal(H(α)/F (α)) ≤ Gal(H/F ) = Sn,

it suffices to show that Gal(H1/F1) ≥ An.
Since both H1 and F1 are Galois extensions of F , the group Gal(H1/F1) = Gal (H/(H ∩ F1))

is an invariant subgroup of Sn = Gal(H/F ). And it cannot be trivial because Gal(F1/F ) is a
meta-abelian group, while Sn for n ≥ 4 is not. It follows that Gal(H1/F1) ≥ An, as wanted. �

Proposition 5.4 Let K be a field, α, γ ∈ K∗, β ∈ K and n ≥ 4. Then the Galois group of the
polynomial

(x − t1) · · · (x − tn−1)

(

x − αtℓ + β

t1 · · · tn−1

)

− γ (9)

over K(t1, . . . , tn−1, t) is Sn.

Proof Put

tn :=
αtℓ + β

t1 · · · tn−1
.

Proposition 5.2 implies that the Galois group of polynomial (9) over K(t1, . . . , tn) is Sn. Using
Proposition 5.3, we conclude that the Galois group of (9) over K(t1, . . . , tn−1, t) is Sn or An.

It remains to show that the x-discriminant of (9) is not a square in K(t1, . . . , tn−1, t). It suffices
to verify that the x-discriminant D(t) of the polynomial g(t, x) = (x − 1)n−1(x − αtℓ − β) − γ
(obtained from (9) by specializing t1 = . . . = tn−1 = 1) is not a square in K(t).

Put a(t) = αtℓ + β − 1, so that g(t) = (x − 1)n−1(x − 1 − a(t)) − γ. Then

∂g

∂x
(x, t) = n(x − 1)n−2

(

x − 1 − n − 1

n
a(t)

)

,

whence

D(t) = nng(t, 1)n−2g

(

t,
n − 1

n
a(t) + 1

)

= (−1)n−1γn−2
(

(n − 1)n−1a(t)n + nnγ
)

.

Thus, deg D(t) = nℓ and D′(t) = δa(t)n−2tℓ−1, where δ ∈ K∗. Since D(t) does not vanish at
the roots of a(t), the only possible multiple root of D(t) is 0, and if it is, its multiplicity is ℓ.
Hence, D(t) is not a square of a polynomial, as wanted. �
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Proposition 5.5 Let K be a field, β ∈ K and γ ∈ K∗. Assume that2

(n − 1)n−1(β − 1)n + nnγ 6= 0 (10)

Then the polynomial

(x − t1) · · · (x − tn−1)
(

x − βt−1
1 · · · t−1

n−1

)

− γ (11)

is separable over K(t1, . . . , tn−1).

Proof Again, it suffices to show that the polynomial g(x) = (x − 1)n−1(x − β) − γ (obtained
from (11) by specializing t1 = . . . = tn−1 = 1) is separable over K. We have

g′(x) = n(x − 1)n−2

(

x − (n − 1)β + 1

n

)

.

Since g(1) = −γ 6= 0 and g
(

(n−1)β+1
n

)

6= 0 by (10), the result follows. �

Proof of Theorem 5.1 One immediately verifies that f3(t, x) = (x2 − 1)(x + tℓ − 1) − 1 is an
irreducible over Q(t) polynomial in x, and its x-discriminant is not a square in Q(t). Hence, its
Galois groups over Q(t) is S3. Since f3(0, x) is separable, this proves the theorem for n = 3.

Assume now that n ≥ 4 and consider the polynomial

F (t1, . . . , tn−1, t, x) = (x − t1) · · · (x − tn−1)

(

x − (−1)n−1 tℓ − 1

t1 · · · tn−1

)

−1 ∈ Q (t1, . . . , tn−1) [t, x].

Propositions 5.4 and 5.5 imply that the Galois group of F over Q(t1, . . . , tn−1, t) is Sn, and that
F (t1, . . . , tn−1, 0, x) is separable over Q(t1, . . . , tn−1).

By Theorem 2.2, there exists a thin set Υ ⊆ Qn−1 such that for any (τ1, . . . , τn−1) ∈
(Q∗)n−1 \ Υ, the Galois group of the specialized polynomial F (τ1, . . . , τn−1, t, x) is Sn, and the
polynomial F (τ1, . . . , τn−1, 0, x) is separable. Finally, Theorem 2.3 implies that there exist pair-
wise distinct non-zero integers a1, . . . , an−1 such that (a1, . . . , an−1) /∈ Υ. This completes the proof
of the theorem. �

6 Suitable integers

Recall that we fix positive integers n and ℓ with n ≥ 3. In addition, starting from this point, we
fix, once and for all, pairwise distinct non-zero integers a1, . . . , an−1 (which exist by Theorem 5.1)
such that the polynomial f(t, x), defined in (8), has Galois group Sn over Q(t), and the polynomial
f(0, x) is separable. Unless the contrary is stated explicitly, the constants in this section depend
on n, ℓ and our particular choice of a1, . . . , an−1. In particular, sufficiently large means of absolute

value exceeding a positive constant depending on n, ℓ and the choice of a1, . . . , an−1.
One immediately verifies that f(0, 0) = 0. Since f(0, x) is a separable polynomial, it has a

simple root at 0. Hence, ∂f
∂x (0, 0) 6= 0, and a1 · · · an−1

∂f
∂x (0, 0) is a non-zero integer.

Put

a(t) := (−1)n−1 tℓ − 1

a1 · · ·an−1
.

Then f(t, x) = (x − a1) · · · (x − an−1) (x − a(t)) − 1. If τ ∈ Z satisfies

τ ≡ 1 mod a1 · · · an−1, (12)

then a(τ) ∈ Z and f(τ, x) ∈ Z[x]. Moreover, for sufficiently large τ , this polynomial gives rise to
the ABC-field Ka(τ), as defined in Proposition 4.1.

If the polynomial f(τ, x) has symmetric Galois group over Q, then the field Ka(τ) is primitive.
Hence, the following statement is a direct consequence of Proposition 4.1:4.

2This assumption can be dropped, but the argument would become slightly more involved.
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Proposition 6.1 There exists a positive integer N (depending on n, ℓ and the choice of
a1, . . . , an−1) with the following property. If the polynomial f(τ, x) has symmetric Galois group
over Q, and the discriminant of the field Ka(τ) exceeds |τ |2/(n+2), then the index of the group of
ABC-units in the group of all units does not exceed N . �

Definition 6.2 An integer τ is called suitable if it satisfies the following conditions.

1. We have (12) and gcd
(

τ, a1 · · ·an−1
∂f
∂x (0, 0)

)

= 1.

2. The Galois group of the polynomial f(τ, x) (over Q) is symmetric.

3. The discriminant of Ka(τ) exceeds |τ |2/(n+2).

4. Let ξ be the root of f(t, x) = (x − a1) · · · (x − an−1) (x − a(τ)) − 1, as defined in Proposi-
tion 4.1:1. Then, for all integers ν, ν1, . . . , νn−1, satisfying

1 ≤ ν ≤ N, 0 ≤ ν1, . . . , νn−1 < νℓ, (13)

where N is defined in Proposition 6.1, and for every determination of

ζ =
(

ξ (ξ − a1)ν1/ν · · · (ξ − an−1)νn−1/ν
)1/ℓ

,

we have [K(ζ) : K] ≥ ℓ.

Theorem 6.3 Put µ = 1
2ℓ(n−1) . There exists a positive constant c (depending on n, ℓ and the

choice of a1, . . . , an−1) with the following property: for a large positive real number X there
exist at least cXµ suitable integers τ which give rise to pairwise non-isomorphic fields Ka(τ) of
discriminants not exceeding X .

Proof By Proposition 4.1:2, there exists a constant c1 with the following property: for any τ ∈ Z,
satisfying |τ | ≤ c1X

µ, the discriminant of the field Ka(τ) does not exceed X . Put T := c1X
µ. Then

at least c2T integers τ satisfy
(

T ℓ + 2

2

)1/ℓ

≤ |τ | ≤ T (14)

and condition 1 of Definition 6.2.
Integers τ not satisfying conditions 2 and 4 of Definition 6.2 form a thin set (see Theorem 2.2

and Proposition 3.2). By Theorem 2.3, the number of such τ with |τ | ≤ T is O
(√

T log T
)

.

Inequality (2) implies that at most O
(√

T
)

integers τ with |τ | ≤ T do not satisfy condition 3. It

follows that at least c3T suitable integers τ satisfy (14).
Finally, (14) implies that A ≤ |a(τ)| ≤ 2A, where

A =
T ℓ + 1

2 |a1 · · · an−1|
.

By Proposition 4.2, each Ka(τ) may occur at most n(n − 1)(n − 2) times. Hence the theorem is
proved with c = c3/(n(n − 1)(n − 2)). �

7 The ABC-field corresponding to a suitable integer

We are ready to complete the proof of Theorem 1.1. In view of Theorem 6.3, it remains to prove
the following.

Proposition 7.1 Let τ be a suitable integer. Then the class group of the field Ka(τ) has an
element of exact order ℓ.
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Proof Since the suitable integer τ is fixed, we may omit the index and write K = Ka(τ). Since
f(0, 0) = 0, the polynomial f(0, x) is divisible by x. Put g(x) = a1 · · ·an−1f(0, x)/x. Then
g(x) ∈ Z[x] and g(0) = a1 · · · an−1

∂f
∂x (0, 0). In particular, g(0) 6= 0 and

gcd(g(0), τ) = 1. (15)

Rewrite the equality f(τ, ξ) = 0 as

ξg(ξ) = (−1)n−1 (ξ − a1) · · · (ξ − an−1) τ ℓ.

Since ξ − a1, . . . , ξ − an−1 are units, this implies the following equality for principal ideals:
(ξ)(g(ξ)) = (τ)ℓ. Relation (15) implies that ξ and g(ξ) are coprime. Hence, each of the prin-
cipal ideals (ξ) and (g(ξ)) is an ℓ-th power of an ideal of K.

Let a be the ideal of K such that a
ℓ = (ξ). The order λ of the class of a in the class group

divides ℓ, and we wish to prove that λ = ℓ.
The ideal a

λ is principal. Fix α ∈ K such that a
λ = (α) and let ζ be some determination of

α1/λ. Then
[K(ζ) : K] ≤ λ ≤ ℓ. (16)

Let ν be the index of ABC-units in the group of all Dirichlet units of the field K. Then any unit

of K can be presented as (a suitable determination of) (ξ − a1)
ν1/ν · · · (ξ − an−1)

νn−1/ν
, where

ν1, . . . , νn−1 ∈ Z. In particular, since ζℓ ∈ K and
(

ζℓ
)

= (ξ), we have

ζℓ = ξ (ξ − a1)
ν1/ν · · · (ξ − an−1)

νn−1/ν
. (17)

Multiplying ζ by a suitable ABC-unit, we may assume that the integers ν1, . . . , νn−1 in (17)
satisfy 0 ≤ ν1, . . . , νn−1 < νℓ. Also, since the Galois group of the polynomial f(τ, x) is symmetric,
Proposition 6.1 implies that ν ≤ N .

Thus, ζ satisfies (17), where the integers ν, ν1, . . . , νn−1 satisfy (13). Hence, [K(ζ) : K] ≥ ℓ.
Together with (16), this implies λ = ℓ, as wanted. This completes the proof of Proposition 7.1
and of Theorem 1.1. �

8 Final remarks

1. Though we do not specifically consider the effectivity aspect in this note, one may check
that our argument effectively bounds the constants X0 and c from Theorem 1.1 in terms of ℓ
and n.

2. The estimate
∣

∣

∣
F (ℓ)

n

∣

∣

∣
≫ Xµ can be, probably, slightly refined by letting the parameters

a1, . . . , an−1 vary.

3. Theorem 1.1 can be refined to count number fields with a given number of real and complex
embeddings. For this purpose, one should simply replace our totally real ABC-fields by fields
with r real and 2s complex embeddings, defined by polynomials of the type

(x − a1) · · · (x − ar)
(

x2 + b1x + c1

)

· · ·
(

x2 + bsx + cs

)

± 1

with b2
j − 4cj < 0.

Some of these points will be addressed in the forthcoming Ph.D. thesis of S. Hernández.
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